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Consider a background state which consists of a spatially uniform chemically reactive 
mixture in a general state of disequilibrium. The analytical method of characteristics 
is used to show that a plane b i t e  amplitude disturbance propagates through this 
system at the frozen sound speed and, if the degree of disequilibrium is sufficient, is 
amplified by the chemical reaction. Some comments are made about the time to 
shock-wave formation and its relation to the homogeneous explosion ignition time, 
and also about expansion waves, which are found to have a tendency towards fixed- 
strength ‘quenching waves’, their strength being proportional to the extent of the 
ambient disequilibrium. 

1. Introduction 
When a gasdynamic disturbance propagates through a chemically reacting gas 

mixture that is in a state of chemical equilibrium, the perturbed reaction acts to damp 
out the disturbance. The behaviour of infinitesimal amplitude (acoustic) disturbances 
and of disturbances of finite amplitude is quite well understood, although some 
interesting problems remain to be solved. Much less interest has been shown in the 
propagation of waves through systems that are not in chemical equilibrium, exceptions 
being the work of Srinivasan & Vincenti (1975) and the writer (1973, 1974), all of 
whom have been concerned with acoustic phenomena. 

The principal result of these acoustic theories is that, under the proper conditions, 
the basic disequilibrium in the background state can lead to disturbance amplification 
rather than decay. Such a possibility is evidently important in a whole variety of 
situations where chemical reactions take place, and not the least significant of these 
concerns explosive gas mixtures. The acoustic theories are generally limited to pre- 
diction of initial amplification, and cannot follow the history of a developing, finite 
amplitude, wave. 

If attention is confined to the head of a wave it is possible to make exact predictions 
of the true nonlinear progress of gas-property gradients at the wave front and in this 
way to calculate such things as the time taken to form a shock wave. The present 
paper considers a simple model of a reaction with Arrhenius kinetics which is also 
reversible, since the extent of the background disequilibrium is vital, and derives 
the time history of the velocity gradient at the plane wave head. 

Using simplifying assumptions to make the exact result more accessible, this 
exploratory investigation shows that the time to shock formation can be comparable 
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with the homogeneous-explosion ignition time, and that expansion waves may have 
a tendency to form into fixed-strength disturbances (‘quenching waves ’ 2 )  with the 
strength depending upon the basic disequilibrium state. Apart from the direct 
application to homogeneous explosions, identification of chemical reaction as an 
amplifier of gasdynamic disturbances may also make the results important in com- 
bustion ignition and extinction studies and in an understanding of combustion- 
generated turbulence and noise. 

2. Equations in characteristic form 

mixture are (Clarke & McChesney 1976, chap. 1, especially $1.18). 
The equations governing the one-dimensional unsteady motion of a reacting gas 

Pt + up, + pu, = 0, (1)  

ct + uc, = - W&. (4) 

Transport effects have been neglected and the symbols appearing in (1)-(4) are as 
follows: p is the density; p is the pressure; u is the gas velocity; c is the mass fraction 
of t,he reactant species A ,  which takes part in the simple reversible reaction 

7 

n A d B  ( 5 )  

( B  is the product species, which can dissociate to produce n molecules of A ) ;  W is 
the molecular weight of A (strictly speaking W will vary with c: suppression of this 
dependence simplifies the subsequent algebra and does not radically affect the final 
results); y is the not necessarily constant ratio of specific heats of the gas mixture 
under chemically frozen conditions; af is the frozen sound speed, which, if the con- 
stituents of the gas mixture are assumed to be thermally perfect, is given by 

a? = YdP; (6) 

(7) 

Q is the energy of formation per unit mass of A ,  and 92 is the rate of progress of reaction 
( 5 ) ,  namely 

The quantities 7 and S are the forward-reaction time, 

w = 7-1{cn - (1 - c) S}. 

7-1 = F(P/P) exp { - E ,  P/Ph 

and the equilibrium constant, 

= ~ P / P )  ~ X P  { - nQ/4P}~ (9) 

respectively. The pre-exponential factor F in (8) and the coefficient z in (9) depend 
upon p/p, but much more weakly than the exponential terms that are explicitly 
displayed in those equations, especially since both Q and E A ,  the reaction’s activation 
energy, are usually large relative toplp. F and z will henceforth be treated as constants; 
it  does not fundamentally affect the results to do this, and their proper variations 
withplp can be included at  the simple expense of more algebra. 
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With the auxiliary relations (6) - (9) ,  equations (1) - (4)  constitute four relations for 

(10) 

p , a - p a , ~ a - ~ ( ~ - l ) Q W n g t , a  = 0, ( 1 1 )  

(12 )  

(13 )  

the four unknowns, p ,  p, u and c .  Equations ( 2 )  and (3) combine to give 

+pajua -P(Y - 1 )  Q Wngta = 0, 

where a and ,4 are two characteristic parameters defined such that 

(dx/dt)p t ixed  = Xalta = u + aj, 

(dX1dt)aiixed = x/$/ = U-aj.  

Transformation from the space-time (x ,  t )  plane to the plane of the characteristic 
parameters (a,P) will be one-to-one if the Jacobian 

J = xata-xI:Bta = 2aftatg (14) 

does not vanish anywhere. The following results are noted for future use: 

ft + ufz = af J - V a  tg + f p  t,}, 

f z  = J-'Ua t,a -f,a ta}, 

where f can be either p ,  p, u or c .  

3. The background state 
The unperturbed field ahead of the wave whose behaviour is to be investigated is 

assumed to be spatially uniform. All x derivatives therefore vanish and (1) - (4)  give 

pot = 0, so that po = constant, ( 1 7 )  

pouot = 0, so that uo = 0, (18 )  

A subscript 0 indicates a value in the background field, and its absence from y in (19 )  
implies that y will henceforth be treated as a constant. 
. Evidently the background state can be visualized in terms of a fixed vesseluniformly 

filled [equation ( 1 7 ) ]  with the gas mixture, which is at rest [equation ( 1 8 ) ] ;  the pressure 
p ,  changes [equation (19)] as the reactant-species concentration co varies [equation 
(a())] ,  namely in proportion to the ambient reaction rate go. The latter would be zero 
if the chemical time T happened to be infinite or, more practically, if the background 
state were one of chemical equilibrium. 

Perturbations of the background state will be assumed to propagate through the 
mixture behind the wave front /3 = 0 (see figure 1 ) .  Continuity of the variables p ,  
p, u and c at /3 = 0 is essential but discontinuities in their derivatives are permitted. 
Any derivative with respect to a must be continuous; discontinuities can appear 
only in the ,4 derivatives. The associated discontinuities in the x derivatives follow 
from (16). 
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FIGURE 1. The 2, t plane, showing the disturbance wave head p = 0 and two typical constant-a 
lines. The inset sketch shows the type of discontinuity in u, at p = 0 which heralds a compression 
wave. 

4. Behaviour at the wave front 
Differentiation of (10) with respect to /3 and of (11) with respect to a followed by 

subtraction and evaluation at  p = 0 + gives 

2Po UfO u.+p + (Po UfO), ua’ 

- (7 - 1 )  &Wn{pa+ 43,go  + PO(tO,~a+ - 9 0 ,  ta’u = 0. (21) 

Quantities with a subscript 0 are suitably continuous in the neighbourhood of p = 0 
while those with a superscript + may be discontinuous at the wave head, so that their 
value just behind the front is required in (21). 

Equations (l), (15) and (16) show that 

%{Pa $9 +Pa t,} + P{% $9 - up t 3  = 0, 

af0Pi = POUJ. 

whence it follows from (17 )  and (18) that 

From the forms of B, 7 and 6 given i s  (7)-( 9) it transpires that 
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Equations (2) ,  (15) and (16) give 

paf(uatp+Upta)+(Patp-pgta) = 0, (25) 

(26) so that toa PJ - poa t$ = PO afo toa ujl. 
From the essential continuity of 9, ( 4 )  shows that ct + uc, must be continuous at 

p = 0;  (15) therefore implies that 

Coa +-=-+- cB Coa Cog 

2afo toa 2afo tJ toa 2afo '0; 

and so 

The final result follows because the quantity in square brackets is cox, and this is zero 
by hypothesis. 

Combining (21) with (23), (24), (26) and (27) gives the following equation for the 
variation of u$ with a:  

Integrating (28) between ai (where uJ = uJi and t = t i )  and a gives [note (6)]  

Since EApo/po $ 1 for many practical situations (values of 50-100 are typical for 
normal temperatures and pressures), the term 90/a;o in the brace brackets in (28) 
has been omitted in presenting the result (29). 

In  order to discover how u,, say, is changing at  /3 = O +  i t  is necessary to find t i ,  
since ( l a ) ,  (16) and (18) give 

Equations (12) and (13) combine to give 

u,' = -UJ/2afot$. (30) 

But 

since ( 6 )  shows that (aaf/&)p,p vanishes when y is constant. The p derivative com- 
bination in (33) can be eliminated with the aid of  (22); thep derivatives can be written 
in more convenient terms by combining (10) and ( 1  1 )  to give 

Pat,+ppta = paf(ujta-uatp) + ~ P ( Y -  1 ) Q W d t a t g .  (34) 

Then (32) with (33) and (22) becomes 
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which, together with the result (29), can be integrated to find the variation of t;g’ with 
time at the wave head. 

Defining 1 (y - l), QE, W n  
A,=%-  

Y (Po/Po)2 

equation (35) gives 

tJ = t;. exp ( - A, ( f )d f ]  

where A = A,+ A, 

and u& is the value of u$ when t = ti. 
Combination of (30), (38) and (29), which yields 

in view of (36), now enables one to evaluate u,’. Noting that (30) makes 

uzi = - uJi/2afOi tiii, 

The significance of this general result is not immediately apparent since the dependence 
of u,’ on the background conditions is obscured by the integrals of A( t ) ,  etc., and 
by the quite complex dependence of A on this state via (36), (37) and (39). In  view of 
the approximations that have already been made, especially the one between (28) 
and (29), some simplification is afforded by neglecting A, relative to A,. In any event 
it is clear from (42) that the temporal behaviour of the velocity gradient at  the wave 
head will depend critically on the sign of A. 

5. Discussion 
If 92, is zero, so that the background state is one of uniform equilibrium, (36) and 

1 (y  - 1)2  Q2Wn (1 -co)-  8 0  < 0. 
(37) show that 

A = A  - 
- - F 7 2 z )  70 

(43) 

Then (42) reduces to the well-known result for propagation through equilibrium 
atmospheres that has been derived by several previous investigators (a short account 
is given by Clarke & McChesney 1976, $2.4) .  

If one considers only a short interval of time, so that A does not change appreciably 
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between ti and t, i t  is evident that (42) can be written in the approximate form 
- 

(44) 
E L  eAt 

u$i - 1 + +A-~(Y + 1)  ugi (ext- 1)’ 

where 
equal to zero for convenience; it easily follows that 

indicates a suitable mean value over the interval ti to t ,  and ti has been set 

Equation (45) shows that, if a$, < 0 and K > 0, u,’ will begin to grow even more 
negative as time proceeds, and the strength of the compression wave head (see figure 
1) will therefore grow with time. Of course this happens to a compression wave in an 
inert gas anyway, and the corresponding result for the chemically inert system is 

Comparison of (45) and (46) shows, as one might expect, that the exothermic reaction 
with its Arrhenius rate dependence causes the compression wave to steepen more 
swiftly than it does in an inert atmosphere. Indeed, if (44) remains valid over the 
requisite period, it shows that ]u$l +co when t +t,, where 

[This corresponds to the vanishing of the Jacobian since tg = 0; see (14).] 
From time t, onwards the compression wave must be treated as a shock wave; in 

the present exothermic situation its subsequent behaviour could become very interest- 
ing indeed. For example, one may inquire into the magnitude oft, relative to the time 
taken for the background homogeneous mixture to ignite, since it will be interesting 
to know whether a shock forms before, during or after this spontaneous event. It is 
during this thermal run-away process that A will reach its maximum possible values. 

For an exact result it  is of course necessary to evaluate all of the component terms 
in R(r) by solving the problem for the ambient atmosphere described by (17)-(20). 
This is quite a challenging problem in its own right in the theory of explosions, and it 
has been considered extensively in the past, using a number of different methods 
and approximations. For present purposes it is quite adequate to consider the simple 
‘small depletion ’ model of the explosion-initiation, or ignition, history. The reverse 
reaction in (7) is ignored and it is assumed that c, or rather co in this case, is a constant 
for all practical purposes; say, co N cni. Then (19) reads 

Pot N P ~ ( Y  - 1) Q wnFc& exp ( - EA PolPo) (48) 

and, since po is the only variable in (48)) it can be integrated directly. Even then the 
result is not especially informative, but it can be made so by adopting the approxi- 
mation EApo/po S 1 .  It is found that the time required to raise p, from poi to the value 
mpoi (m > 1) is given by t,, where 
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For any substantial value of m, such as 2, the last term in (49) is negligible and t ,  
gives a value for the ignition time tign, namely 

From this preliminary, exploratory analysis it is not possible to be more precise 
but A(ti), the initial value of A, and the mean value K of A are evidently comparable 
for any times t ;5 tlgn. In these circumstances a shock can evidently form prior to 
spontaneous ignition, or indeed a t  about the same time as this process, if luZ+il is large 
enough. The extremely rapid thermal run-away phenomenon that follows the 
(relatively) slow self-heating process in the interval 0 < t ;5 tign is synonymous with 
very considerable rises in the positive value of A before it sinks back to its negative 
equilibrium value [given in (43)], and all of this suggests that shocks are quite likely 
to form from some initial compressive disturbance during the interval of spontaneous 
ignition. 

In  so far as (44) is a reasonable representation of the exact solution (42) it  is also 
interesting to note that when u2i > 0 and > 0 

u,$32K/(y+1) as &+-a. (51) 

Therefore an expansion wave head tends towards a strength which is independent 
of its initial value, and reflects instead the degree of background disequilibrium, as 
exemplified by X. Of course the condition At + co means that this asymptotic expansion 
wave state may be reached only after many ignition-time intervals; since A will become 
negative in the last stages of a homogeneous explosion, the approximation (44) 
cannot be valid up to these times, but the tendency towards a reaction-induced 
'quenching wave ' of some fixed form is nonetheless important. 
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